Skip to main content

Make Induction Heater

Make Induction Heater



This circuit use full comments value or comments name.




Using inductor 10uH to 100uH you can use everyone this range or heating inductor coil 5turn use 16SWG to 22SWG I am use 22SWG you can use any of this range.


Using MOSFET Z44 very frist switching 
Z44 frequency range 200MHZ to 4GHZ.
Another MOSFET IRF540 I am using this circuit Z44 you can use any of this first switching MOSFET.


Using Diode 2N4007 this is American diode
This frist recover Diode you can use any frist recover Diode like 2N4107.





Using resistance 330 ohm resistance use gate biasing 330 ohm to 470 ohm you can also use this range of resistance.
Using 10K ohms resistance gate pin discharge or noise filter you can use 10K ohm to 20K ohm.

Using capacitor 1.5uF you can use 1.5uF to 20uF range I am using this circuit 1.5uF.


IRFZ44 datasheet this is a third generation Power MOSFET that provide the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. ... The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.
frequency range from 200 MHz to 4 GHz and a measurement range from 30 mW to 300 W.

Comments

Popular posts from this blog

Fm transmitter circuit

Fm transmitter circuit Power supply   :-   Using power supply stable DC voltage 2V to 3.7V max. You can only use battery because battery is perfect for this circuit battery output doesn't any noise. Components  :- Transistor BC547, Resistance 100 ohms, 4.7K ohms.   Capacitor 1nF, 47pF, 22pF.   Inductor 1uH. Condenser mic any. Resistance  :-   Using resistance 100 ohme +-5% changing 1/3watt, 4.7K ohms +-5% changing 1/3watt. Capacitor  :-   1nF this capacitor number 102 non-polar, 22pF this capacitor number 22 non-polar, 47pF this capacitor number 47 non-polar. Inductor  :-   This part important part for any transmitter circuit, 1uH 5Turn 24SWG. Transistor  :-   BC547  is an NPN Bipolar junction transistor. It is commonly  used  to amplify current. A small current at its base controls a larger current at collector & emitter terminals.  It has a transition  frequency range  up to 100 MHz. When using the transistor as a switch, the max current rating p

MW transmitter using Arduino nano

MW transmitter using Arduino nano Circuit Diagram MW frequency :-   Medium wave is the part of the medium frequency radio band used mainly for AM radio broadcasting. The spectrum provides about 120 channels with limited sound quality. During daytime, only local stations can be received. Code _____________________________________________ #define ANTENNA_PIN PB3 void setup() { Serial.begin(115200); uint32_t fTransmit = 600; DDRB |= (1 << ANTENNA_PIN); TCCR2A = (0 << COM2A1) + (1 << COM2A0); TCCR2A |= (1 << WGM21) + (0 << WGM20); TCCR2B = (0 << CS22) + (0 << CS21) + (1 << CS20); OCR2A = F_CPU / (2000 * fTransmit) - 1; char strbuf[255]; sprintf(strbuf, "Will broadcast at %d KHz", (F_CPU / (2 * (1 + OCR2A)) / 1000)); Serial.println(strbuf); TCCR1A |= (1 << WGM11) + (1 << WGM10); TCCR1B = (1 << WGM12); TCCR1B |= (0 << CS12) + (0 << CS11) + (1 << CS10);

FM transmitter using crystal

FM transmitter using crystal  Video link -  https://youtu.be/aV7K2NHrHTM 3Volt circuit digram  5Volt circuit digram This Transmitter range 300 metre to 500 metre without any obstacle otherwise range 200 anywhere. It's a spy device. Discuss about listing components Used transistor BC547 for oscillator and I'm using crystal for noise clear frequency and it is very stable frequency.  I am using crystal 25MHz. Using 1K ohms resistance for safe collector transistor overheating. Using 4.7K ohms resistance for active mic .